یک شبکه عصبی مصنوعی منظم بیزی برای پیش بینی بازار سهام

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار و عضو هیئت علمی گروه حسابداری – دانشگاه فردوسی مشهد

2 کارشناسی ارشد ریاضی- کارشناسی ارشد حسابداری- دانشگاه حکیم سبزواری و موسسه آموزش عالی حکیم نظامی قوچان

چکیده

در این مقاله شبکه مصنوعی عصبی تنظیم شده بیزی به عنوان یک روش جدید برای پیش بینی وضعیت مالی بازار پیشنهاد داده شده است. قیمت روزانه بازار و شاخص‌های فنی مالی به عنوان ورودی برای پیش بینی یک روز بعد قیمت سهام فردی بسته شده، استفاده شده است. پیش بینی حرکت قیمت سهام به طور کلی بعنوان یک کار چالش برانگیز و مهم برای تجزیه و تحلیل سری‌های زمانی مالی در نظرگرفته می‌شود. پیش بینی دقیق حرکات قیمت سهام می‌تواند نقش مهمی در کمک به سرمایه‌گذاران برای بهبود بازده سهام بازی کند. پیچیدگی در پیش بینی این روند در اختلال ذاتی و بی ثباتی در حرکت روزانه قیمت سهام نهفته است. شبکه‌های منظم بیزی یک ماهیت احتمالی به وزن‌های شبکه اختصاص داده، اجازه می‌دهد شبکه به طور خودکار و بهینه مدل‌های بیش از حد پیچیده را جریمه کند. روش پیشنهادی بطور بالقوه نیاز بیش از حد به برازش و آموزش را کاهش داده و کیفیت پیش بینی و تعمیم شبکه را ارتقا می‌دهد. آزمایش با سهام شرکت‌های ایران خودرو و سایپا به منظور تعیین اثربخشی مدل انجام شد. دلیل این انتخاب جذابیت صنعت خودرو برای فعالان بازار سرمایه است، زیرا نرخ بازدهی آن نسبت به شاخص کل بورس و شاخص کل صنعت بالاتر است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Regular Bayesian Meural Network to Predict the Stock Market

نویسندگان [English]

  • Mahmood Lari Dasht 1
  • Shaban Mohammadi 2
1 Assistant Professor and Academic Member of the Accounting Department - Ferdowsi University of Mashhad
2 Master of Science in Mathematics - Master of Accounting - Hakim Sabzevari University and Hokim Military Education Institute of Quchan
چکیده [English]

In this paper, artificial neural networks, Bayesian set as a new method for forecasting the financial markets has been proposed. Financial daily market price and financial technical indicators as inputs to predict an individual's stock price closed the next day is used. Prediction of the movement of stock prices in general as an important and challenging task for the analysis of financial time series is considered. Accurate prediction of stock price movements can play an important role in helping to investors for improving of return on equity. The complexity lie in predicting the trend disorder and instability in the daily movement of the stock price. Bayesian networks regularly weighing the possible nature of a dedicated network, allow network optimization and automation of complex models that are too fine. Experimenting with stock companies, Iran Khodro and Saipa was conducted to determine the effectiveness of the model. The reason for this selection, is attractiveness of Auto industry for activists of capital market, because its return is higher than industry and market indexes. 

کلیدواژه‌ها [English]

  • Regular Bayesian Neural Network
  • Stock price prediction
 اسماعیل زاده، علی و هاجر شاکری، (1394)، "پیش بینی درماندگی مالی شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از شبکه بیزی ساده و مقایسه آن با تحلیل پوششی داده ها"، مهندسی مالی و مدیریت اوراق بهادار (مدیریت پرتفوی)، شماره 22، صص. 27- 1.

 سعیدی، علی و آرزو آقایی، (1388)، " پیش بینی درماندگی مالی شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از شبکه‌های بیزی"، بررسی‌های حسابداری و حسابرسی شماره 56، صص. 78-59.

صالحی راد، محمدرضا و نفیسه حبیبی فرد، (1391)، "مقایسه مدل گزینی بیزی بر اساس روشMCMC و سری‌های زمانی مالی (مدل گارچ) "، فصلنامه علمی پژوهشی دانش مالی تحلیل اوراق بهادار، شماره 15، صص. 67-59.

Armano, G. , Marchesi, M. , & Murru, A. (2004). A hybrid genetic-neural architecture for stock indexes forecasting. Information Sciences, 170, 3–33. Atsalakis, G. S. , & Valvanis, K. P. (2009). Surveying stock market forecasting techniques – Part II: Soft computing methods. Expert Systems with Applications, 36, 5932–5941.

Baba, N. , & Kozaki, M. (1992). An intelligent forecasting system of stock price using neural networks. In Proceedings of the IEEE international joint conference on neural networks (pp. 371–) , http: //dx. doi. org/10. 1109/IJCNN. 1992. 287183..

Blanco, A. , Delgado, M. , & Pegalajar, M. C. (2001). A real-coded genetic algorithm for training recurrent neural networks. Neural Networks, 14, 93–105.

Burden, F. , & Winkler, D. (2008). Bayesian regularization of neural networks. Methods in Molecular Biology, 458, 25–44.

Chang, P. , & Liu, C. (2008). A TSK type fuzzy rule based system for stock price prediction. Expert Systems with Applications, 34, 135–144.

Chang, P. , Wang, D. , & Zhou, C. (2012). A novel model by evolving partially connected neural network for stock price trend forecasting. Expert Systems with Applications, 39, 611–620.

Chen, Y. , Yanga, B. , & Abraham, A. (2006). Flexible neural trees ensemble for stock index modeling. Neurocomputing, 70, 697–703.

Chenoweth, T. , & Obradovic, Z. (1996). A multi-component nonlinear prediction system for the S&P 500 index. Neurocomputing, 10, 275–290.

Chu, H. H. , Chen, T. L. , Cheng, C. H. , & Huang, C. C. (2009). Fuzzy dual-factor timeseries for stock index forecasting. Expert Systems with Applications, 36, 165–171.

Fernandez-Rodriguez, F. , Gonzalez-Martel, C. , & Sosvilla-Rivebo, S. (2000). On the profitability of technical trading rules based on artificial neural networks: Evidence from the Madrid stock market. Economics Letters, 69, 89–94.

Forsee, F. D. , & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning. In 1997 IEEE international conference on neural networks (Vols. 1–4, pp. 1930–1935). Houston, TX, USA, http: //dx. doi. org/10. 1109/ICNN. 1997. 614194.

Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert, 6, 47–51.

Ghiassi, M. , Saidane, H. , & Zimbra, D. K. (2005). A dynamic artificial neural network model for forecasting time series events. International Journal of Forecasting, 21, 341–362.

Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9, 143–151.

Hamzacebi, C. , Akay, D. , & Kutay, F. (2009). Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Systems with Applications, 36, 3839–3844.

Harrington, P. B. (1993). Sigmoid transfer functions in backpropagation neural networks. Analytical Chemistry, 65, 2167–2168.

Hassan, M. R. , Nath, B. , & Kirley, M. (2007). A fusion model of HMM, ANN, and GA for stock market forecasting. Expert Systems with Applications, 33, 171–180.

Kara, Y. , Boyacioglu, M. A. , & Baykan, O. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange. Expert Systems with Applications, 38, 5311–5319.

Kim, K. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55, 307–319.

Kim, K. , & Han, I. (2000). Genetic algorithms approach to feature discretization in artificial neural networks for prediction of stock price index. Expert Systems with Applications, 19, 125–132. Leigh, W. , Purvis, R. , &

Lendasse, A. , De Bodt, E. , Wertz, V. , & Verleysen, M. (2000). Non-linear financial time series forecasting application to the Bel 20 stock market index. European Journal of Economical and Social Systems, 14, 81–91.

Leung, M. T. , Daouk, H. , & Chen, A. S. (2000). Forecasting stock indices: A comparison of classification and level estimation models. International Journal of Forecasting, 16, 173–190.

MacKay, D. J. C. (1992). A practical Bayesian framework for back propagation networks. Neural Computation, 4, 448–472.

Oh, K. J. , & Kim, K. J. (2002). Analyzing stock market tick data using piecewise nonlinear model. Expert Systems with Applications, 2, 249–255.

Ragusa, J. M. (2002). Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: A case study in romantic decision support. Decision Support Systems, 32, 361–377. http: //dx. doi. org/10. 1109/IJCNN. 1992. 287183.

Ritanjali, M. , & Panda, G. (2007). Stock market prediction of S&P 500 and DJIA using bacterial foraging optimization technique. In 2007 IEEE congress on evolutionary computation (pp. 2569–2579) , http: //dx. doi. org/10. 1109/CEC. 2007. 4424794.

Roh, T. H. (2007). Forecasting the volatility of stock price index. Expert Systems with Applications, 33, 916–922.

Walezak, S. (1999). Gaining competitive advantage for trading in emerging capital markets with neural networks. Journal of Management Information Systems, 16, 178–194.

Yudong, Z. , & Lenan, W. (2009). Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network. Expert Systems with Applications, 36, 8849–8854.